118 research outputs found

    Gain modulation of synaptic inputs by network state in auditory cortex in vivo

    Get PDF
    The cortical network recurrent circuitry generates spontaneous activity organized into Up (active) and Down (quiescent) states during slow-wave sleep or anesthesia. These different states of cortical activation gain modulate synaptic transmission. However, the reported modulation that Up states impose on synaptic inputs is disparate in the literature, including both increases and decreases of responsiveness. Here, we tested the hypothesis that such disparate observations may depend on the intensity of the stimulation. By means of intracellular recordings, we studied synaptic transmission during Up and Down states in rat auditory cortex in vivo. Synaptic potentials were evoked either by auditory or electrical (thalamocortical, intracortical) stimulation while randomly varying the intensity of the stimulus. Synaptic potentials evoked by the same stimulus intensity were compared in Up/Down states. Up states had a scaling effect on the stimulus-evoked synaptic responses: the amplitude of weaker responses was potentiated whereas that of larger responses was maintained or decreased with respect to the amplitude during Down states. We used a computational model to explore the potential mechanisms explaining this nontrivial stimulus–response relationship. During Up/Down states, there is different excitability in the network and the neuronal conductance varies. We demonstrate that the competition between presynaptic recruitment and the changing conductance might be the central mechanism explaining the experimentally observed stimulus–response relationships. We conclude that the effect that cortical network activation has on synaptic transmission is not constant but contingent on the strength of the stimulation, with a larger modulation for stimuli involving both thalamic and cortical networks.Fil: Reig, Ramon. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Karolinska Huddinge Hospital. Karolinska Institutet; SueciaFil: Zerlaut, Yann. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Vergara, Ramiro Oscar. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Acústica y Percepción Sonora; ArgentinaFil: Destexhe, Alain. Centre National de la Recherche Scientifique; Francia. Unité de Neurosciences, Information et Complexité; FranciaFil: Sánchez Vives, María V.. Institut d'Investigacions Biomèdiques August Pi i Sunyer; España. Institució Catalana de Recerca i Estudis Avancats; Españ

    La Flora aeròbia de les apendicitis cròniques

    Get PDF

    Image registration techniques with multiresolution analysis in satellite oceanography

    Get PDF
    En aquest article es fa una descripció dels procediments realitzats per enregistrar dues imatges geomètricament, de forma automàtica, si es pren la primera com a imatge de referència. Es comparen els resultats obtinguts mitjançant tres mètodes. El primer mètode és el d’enregistrament clàssic en domini espacial maximitzant la correlació creuada (MCC)[1]. El segon mètode es basa en aplicar l’enregistrament MCC conjuntament amb un anàlisi multiescala a partir de transformades wavelet [2]. El tercer mètode és una variant de l’anterior que es situa a mig camí dels dos. Per cada un dels mètodes s’obté una estimació dels coeficients de la transformació que relaciona les dues imatges. A continuació es transforma per cada cas la segona imatge i es georeferencia respecte la primera. I per acabar es proposen unes mesures quantitatives que permeten discutir i comparar els resultats obtinguts amb cada mètode.In this paper we present processing techniques for automated image-to-image geometrical registration. One reference image is used to register the working image. Three methods are used. The first method is the classical image registration method using the maximum cross-correlation (MCC) in the spatial domain [1]. The second method is based on MCC and multiscale analysis through wavelet multiresolution techniques [2]. The third one is a fusion of the two previous methods. For each technique the transformation coefficients relating both images are estimated. Finally, the second image is transformed and georeferenced to the first one. In the conclusion, a proposal of quantitative parameters leads to a final discussion on the results.En este artículo se describen los procedimientos realizados para registrar geométricamente dos imágenes de forma automática si se toma la primera como imagen de referencia. Se comparan los resultados obtenidos mediante tres métodos. El primero es el método clásico para registrar dos imágenes en el dominio espacial maximizando la correlación cruzada (MCC) [1]. En el segundo se trata de aplicar de forma conjunta técnicas de análisis multiescalar, basadas en las transformaciones wavelet y el método MCC [2]. El tercero es una variación del segundo situada a medio camino de los dos métodos anteriores. Para cada método se obtiene una estimación de los coeficientes de la transformación que relaciona las dos imágenes. A continuación, se transforma la segunda imagen que se georreferencia respecto a la primera para cada caso. Para finalizar se proponen unas medidas cuantitativas que nos permiten discutir y comparar los resultados obtenidos en cada uno de los método

    Features extraction based on the Discrete Hartley Transform for closed contour

    Get PDF
    In this paper the authors propose a new closed contour descriptor that could be seen as a Feature Extractor of closed contours based on the Discrete Hartley Transform (DHT), its main characteristic is that uses only half of the coefficients required by Elliptical Fourier Descriptors (EFD) to obtain a contour approximation with similar error measure. The proposed closed contour descriptor provides an excellent capability of information compression useful for a great number of AI applications. Moreover it can provide scale, position and rotation invariance, and last but not least it has the advantage that both the parameterization and the reconstructed shape from the compressed set can be computed very efficiently by the fast Discrete Hartley Transform (DHT) algorithm. This Feature Extractor could be useful when the application claims for reversible features and when the user needs and easy measure of the quality for a given level of compression, scalable from low to very high quality

    Improving Pitch Tracking Performance in Hard Noise Conditions by a Preprocessing Based on Mathematical Morphology

    Get PDF
    In this paper we show how a nonlinear preprocessing of speech signal -with high noise- based on morphological filters improves the performance of robust algorithms for pitch tracking (RAPT). This result happens for a very simple morphological filter. More sophisticated ones could even improve such results. Mathematical morphology is widely used in image processing and has a great amount of applications. Almost all its formulations derived in the two-dimensional framework are easily reformulated to be adapted to one-dimensional contex

    Exploring Non-linear Transformations for an Entropybased Voice Activity Detector

    Get PDF
    In this paper we explore the use of non-linear transformations in order to improve the performance of an entropy based voice activity detector (VAD). The idea of using a non-linear transformation comes from some previous work done in speech linear prediction (LPC) field based in source separation techniques, where the score function was added into the classical equations in order to take into account the real distribution of the signal. We explore the possibility of estimating the entropy of frames after calculating its score function, instead of using original frames. We observe that if signal is clean, estimated entropy is essentially the same; but if signal is noisy transformed frames (with score function) are able to give different entropy if the frame is voiced against unvoiced ones. Experimental results show that this fact permits to detect voice activity under high noise, where simple entropy method fails

    Satellite image georegistration from coast-line codification

    Get PDF
    This paper presents a contour-based approach for automatic image registration in satellite oceanography. Accurate image georegistration is an essential step to increase the eff ectiveness of all the image processing methods that aggregate information from diff erent sources, i.e. applying data fusion techniques. In our approach the images description is based on main contours extracted from coast-line. Each contour is codifi ed by a modifi ed chain-code, and the result is a discrete value sequence. The classical registration techniques were area-based, and the registration was done in a 2D domain (spatial and/or transformed); this approach is feature-based, and the registration is done in a 1D domain (discrete sequences). This new technique improves the registration results. It allows the registration of multimodal images, and the registration when there are occlusions and gaps in the images (i.e. due to clouds), or the registration on images with moderate perspective changes. Finally, it has to be pointed out that the proposed contour-matching technique assumes that a reference image, containing the coastlines of the input image geographical area, is available

    Orbital X-Ray Variability of the Microquasar LS 5039

    Get PDF
    The properties of the orbit and the donor star in the high mass X-ray binary microquasar LS 5039 indicate that accretion processes should mainly occur via a radiatively driven wind. In such a scenario, significant X-ray variability would be expected due to the eccentricity of the orbit. The source has been observed at X-rays by several missions, although with a poor coverage that prevents to reach any conclusion about orbital variability. Therefore, we conducted RossiXTE observations of the microquasar system LS 5039 covering a full orbital period of 4 days. Individual observations are well fitted with an absorbed power-law plus a Gaussian at 6.7 keV, to account for iron line emission that is probably a diffuse background feature. In addition, we have taken into account that the continuum is also affected by significant diffuse background contamination. Our results show moderate power-law flux variations on timescales of days, as well as the presence of miniflares on shorter timescales. The new orbital ephemeris of the system recently obtained by Casares et al. have allowed us to show, for the first time, that an increase of emission is seen close to the periastron passage, as expected in an accretion scenario. Moreover, the detected orbital variability is a factor of ~4 smaller than the one expected by using a simple wind accretion model, and we suggest that an accretion disk around the compact object could be responsible for this discrepancy. On the other hand, significant changes in the photon index are also observed clearly anti-correlated with the flux variations. We interpret the overall X-ray spectral characteristics of LS 5039 in the context of X-ray radiation produced by inverse Compton and/or synchrotron processes in the jet of this microquasar.Comment: published in Astrophysical Journal, submission format (real number of pages: 7, 4 figures
    corecore